Functional analysis of hemichannels and gap-junctional channels formed by connexins 43 and 46

نویسندگان

  • Quan V. Hoang
  • Haohua Qian
  • Harris Ripps
چکیده

PURPOSE The gap junctions (GJs) mediating direct cell-cell interaction are formed by clusters of membrane-spanning proteins known as connexins (Cxs). These channels play a key role in signal transmission, and their permeability, time-, and voltage-dependence are governed by the properties of the specific Cxs forming the gap junctions. Retinal pigment epithelium (RPE) cells express Cx43 and Cx46. Here, we employed a heterologous expression system to explore the functional properties of the hemichannels and GJs that could be formed by different combinations of these Cxs. Specifically, we examined the response kinetics of GJs formed by pairing cells expressing Cx43 or Cx46, or those expressing both, i.e., designated as Cx43*Cx46. METHODS The Xenopus oocyte expression system and a two-electrode voltage clamp technique were used to study the properties of hemichannels and GJs formed in oocytes transfected with Cx43 and/or Cx46 mRNA. RESULTS Depolarizing voltages activated hemicurrents of similar amplitude from single oocytes transfected with Cx46 or Cx43*Cx46, but not in oocytes expressing Cx43 alone. Incorporating Cx43 with Cx46 altered the gating charge, but not the voltage sensitivity of the hemichannels. In addition, Cx43*Cx46 hemichannel currents exhibited faster activation kinetics than homomeric Cx46 hemichannels. Both homotypic GJs formed by Cx43 and Cx46, and heteromeric Cx43*Cx46 GJs exhibited large junctional conductances with amplitudes of 6.5+/-3.0 microS (Cx43), 8.9+/-3.4 microS (Cx46), and 8.5+/-1.8 microS (Cx43*46); a significantly lower conductance (1.8+/-0.7 microS) was observed for heterotypic GJs formed by Cx43 and Cx46. There were also differences in their gating kinetics. Whereas the kinetics of homotypic Cx46 could be described by a single exponential function (tau=0.91 s), double exponential functions were required for homotypic Cx43 (tau(1)=0.24, tau(2)=3.4 s), heterotypic Cx43/Cx46 (tau(1)=0.29, tau(2)=3.6 s), and heteromeric Cx43*Cx46/Cx43*Cx46 (tau(1)=1.2, tau(2)=8.1 s) junctions. CONCLUSIONS The failure of oocytes expressing Cx43 to exhibit hemichannel activity is an intrinsic membrane property of this Cx, and cannot be attributed to a lack of expression; western blot analysis showed clearly that Cx43 was expressed in oocytes in which it was injected. Our results provide further evidence that Cx43 and Cx46 form both heterotypic and heteromeric channels when co-expressed, an indication that various combinations of Cxs may participate in gap-junctional communication between RPE cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43.

Gap-junctional channels are formed by two connexons or gap-junctional hemichannels in series, with each connexon conformed by six connexin molecules. As with other membrane proteins, structural information on connexons can potentially be obtained with techniques that take advantage of the highly specific thiol chemistry by positioning Cys residues at locations of interest, ideally in an otherwi...

متن کامل

Mutations of connexin 26 at position 75 and dominant deafness: essential role of arginine for the generation of functional gap-junctional channels.

Gap-junctional channels are large intercellular aqueous pores formed by head-to-head association of two gap-junctional hemichannels (connexin hexamers), one from each of the adjacent cells. The mechano-transduction of sound waves into electrical impulses occurs in the cochlea, which houses the organ of Corti. Hereditary deafness is frequent and mutations of connexin 26, the predominant connexin...

متن کامل

Inhibition by Commercial Aminoglycosides of Human Connexin Hemichannels Expressed in Bacteria.

In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and...

متن کامل

Mechanism of the defect in gap-junctional communication by expression of a connexin 26 mutant associated with dominant deafness.

Gap-junctional channels (connexin oligomers) are large-diameter aqueous pores formed by head-to-head association of two gap-junctional hemichannels, one from each of the adjacent cells. Profound hearing loss of genetic origin is common, and mutations of connexin 26 (Cx26) are the most frequent cause of this disorder. The Cx26 R75W mutant has been associated with disruption of cell-to-cell commu...

متن کامل

Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45.

Connexins (Cxs) 40, 43, and 45 are expressed in many different tissues, but most abundantly in the heart, blood vessels, and the nervous system. We examined formation and gating properties of heterotypic gap junction (GJ) channels assembled between cells expressing wild-type Cx40, Cx43, or Cx45 and their fusion forms tagged with color variants of green fluorescent protein. We show that these Cx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2010